Volume 15, issue 4 (2011)

Download this article
For screen
For printing
Recent Issues

Volume 18 (2014)
Issue 1 1–616
Issue 2 617–1244

Volume 17 (2013) 1–5

Volume 16 (2012) 1–4

Volume 15 (2011) 1–4

Volume 14 (2010) 1–5

Volume 13 (2009) 1–5

Volume 12 (2008) 1–5

Volume 11 (2007)

Volume 10 (2006)

Volume 9 (2005)

Volume 8 (2004)

Volume 7 (2003)

Volume 6 (2002)

Volume 5 (2001)

Volume 4 (2000)

Volume 3 (1999)

Volume 2 (1998)

Volume 1 (1997)

G&T Monographs
The Journal
About the Journal
Editorial Board
Editorial Interests
Author Index
Editorial procedure
Submission Guidelines
Submission Page
Author copyright form
Subscriptions
Contacts
G&T Publications
GTP Author Index
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060

Rigidity of spherical codes

Henry Cohn, Yang Jiao, Abhinav Kumar and Salvatore Torquato

Geometry & Topology 15 (2011) 2235–2273

DOI: 10.2140/gt.2011.15.2235

Abstract

A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configuration of the Coxeter–Todd lattice is not jammed, despite being locally jammed (each individual cap is held in place if its neighbors are fixed); in this respect, the Coxeter–Todd lattice is analogous to the face-centered cubic lattice in three dimensions. By contrast, we find that many other packings have jammed kissing configurations, including the Barnes–Wall lattice and all of the best kissing configurations known in four through twelve dimensions. Jamming seems to become much less common for large kissing configurations in higher dimensions, and in particular it fails for the best kissing configurations known in 25 through 31 dimensions. Motivated by this phenomenon, we find new kissing configurations in these dimensions, which improve on the records set in 1982 by the laminated lattices.

Additional material
Keywords

rigidity, jamming, packing, spherical codes, kissing problem

Mathematical Subject Classification

Primary: 52C25

Secondary: 52C17

References
Publication

Received: 24 February 2011
Revised: 23 May 2011
Accepted: 3 June 2011
Published: 23 November 2011
Proposed: Rob Kirby
Seconded: Dmitri Burago, Joan Birman

Authors
Henry Cohn
Microsoft Research New England
One Memorial Drive
Cambridge, MA 02142
Yang Jiao
Physical Sciences–Oncology Center
Princeton University
Princeton, New Jersey 08544
Abhinav Kumar
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
Salvatore Torquato
Department of Chemistry
Princeton University
Princeton, New Jersey 08544