Volume 11 (2007)

Download this article
For screen
For printing
Recent Issues

Volume 18 (2014)
Issue 1 1–616
Issue 2 617–1244
Issue 3 1245–1863

Volume 17 (2013) 1–5

Volume 16 (2012) 1–4

Volume 15 (2011) 1–4

Volume 14 (2010) 1–5

Volume 13 (2009) 1–5

Volume 12 (2008) 1–5

Volume 11 (2007)

Volume 10 (2006)

Volume 9 (2005)

Volume 8 (2004)

Volume 7 (2003)

Volume 6 (2002)

Volume 5 (2001)

Volume 4 (2000)

Volume 3 (1999)

Volume 2 (1998)

Volume 1 (1997)

G&T Monographs
The Journal
About the Journal
Editorial Board
Editorial Interests
Author Index
Editorial procedure
Submission Guidelines
Submission Page
Author copyright form
Subscriptions
Contacts
G&T Publications
GTP Author Index
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060

Cutting and pasting in the Torelli group

Andrew Putman

Geometry & Topology 11 (2007) 829–865

DOI: 10.2140/gt.2007.11.829

arXiv: math.GT/0608373

Abstract

We introduce machinery to allow “cut-and-paste”-style inductive arguments in the Torelli subgroup of the mapping class group. In the past these arguments have been problematic because restricting the Torelli group to subsurfaces gives different groups depending on how the subsurfaces are embedded. We define a category TSur whose objects are surfaces together with a decoration restricting how they can be embedded into larger surfaces and whose morphisms are embeddings which respect the decoration. There is a natural “Torelli functor” on this category which extends the usual definition of the Torelli group on a closed surface. Additionally, we prove an analogue of the Birman exact sequence for the Torelli groups of surfaces with boundary and use the action of the Torelli group on the complex of curves to find generators for the Torelli group. For genus g ≥ 1 only twists about (certain) separating curves and bounding pairs are needed, while for genus g=0 a new type of generator (a “commutator of a simply intersecting pair”) is needed. As a special case, our methods provide a new, more conceptual proof of the classical result of Birman and Powell which says that the Torelli group on a closed surface is generated by twists about separating curves and bounding pairs.

Keywords

Torelli group, mapping class group, Birman exact sequence, curve complex

Mathematical Subject Classification

Primary: 57S05

Secondary: 20F05, 57M07, 57N05

References
Forward citations
Publication

Received: 25 August 2006
Accepted: 10 April 2007
Published: 10 May 2007
Proposed: Joan Birman
Seconded: Walter Neumann, Martin Bridson

Authors
Andrew Putman
Department of Mathematics
University of Chicago
5734 University Ave
Chicago, Il 60637
USA
http://www.math.uchicago.edu/~andyp