Volume 8 (2004)

Download this article
For screen
For printing
Recent Issues

Volume 18 (2014)
Issue 1 1–616
Issue 2 617–1244
Issue 3 1245–1863

Volume 17 (2013) 1–5

Volume 16 (2012) 1–4

Volume 15 (2011) 1–4

Volume 14 (2010) 1–5

Volume 13 (2009) 1–5

Volume 12 (2008) 1–5

Volume 11 (2007)

Volume 10 (2006)

Volume 9 (2005)

Volume 8 (2004)

Volume 7 (2003)

Volume 6 (2002)

Volume 5 (2001)

Volume 4 (2000)

Volume 3 (1999)

Volume 2 (1998)

Volume 1 (1997)

G&T Monographs
The Journal
About the Journal
Editorial Board
Editorial Interests
Author Index
Editorial procedure
Submission Guidelines
Submission Page
Author copyright form
Subscriptions
Contacts
G&T Publications
GTP Author Index
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060

Witten's conjecture and Property P

Peter B Kronheimer and Tomasz S Mrowka

Geometry & Topology 8 (2004) 295–310

DOI: 10.2140/gt.2004.8.295

arXiv: math.GT/0311489

Abstract

Let K be a non-trivial knot in the 3–sphere and let Y be the 3–manifold obtained by surgery on K with surgery-coefficient 1. Using tools from gauge theory and symplectic topology, it is shown that the fundamental group of Y admits a non-trivial homomorphism to the group SO(3). In particular, Y cannot be a homotopy-sphere.

Keywords

3–manifold, knot, surgery, homotopy sphere, gauge theory

Mathematical Subject Classification

Primary: 57M25, 57R57

Secondary: 57R17

References
Forward citations
Publication

Received: 7 December 2003
Revised: 9 December 2003
Accepted: 13 February 2004
Published: 14 February 2004
Proposed: Robion Kirby
Seconded: John Morgan, Ronald Stern

Authors
Peter B Kronheimer
Department of Mathematics
Harvard University
Cambridge
Massachusetts 02138
USA
Tomasz S Mrowka
Department of Mathematics
Massachusetts Institute of Technology
Cambridge
Massachusetts 02139
USA