Volume 7 (2003)

Download this article
For printing
Recent Issues

Volume 18 (2014)
Issue 1 1–616
Issue 2 617–1244
Issue 3 1245–1863

Volume 17 (2013) 1–5

Volume 16 (2012) 1–4

Volume 15 (2011) 1–4

Volume 14 (2010) 1–5

Volume 13 (2009) 1–5

Volume 12 (2008) 1–5

Volume 11 (2007)

Volume 10 (2006)

Volume 9 (2005)

Volume 8 (2004)

Volume 7 (2003)

Volume 6 (2002)

Volume 5 (2001)

Volume 4 (2000)

Volume 3 (1999)

Volume 2 (1998)

Volume 1 (1997)

G&T Monographs
The Journal
About the Journal
Editorial Board
Editorial Interests
Author Index
Editorial procedure
Submission Guidelines
Submission Page
Author copyright form
Subscriptions
Contacts
G&T Publications
GTP Author Index
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060

Seiberg–Witten–Floer stable homotopy type of three-manifolds with b1=0

Ciprian Manolescu

Geometry & Topology 7 (2003) 889–932

DOI: 10.2140/gt.2003.7.889

arXiv: math.DG/0104024

Abstract

Using Furuta's idea of finite dimensional approximation in Seiberg–Witten theory, we refine Seiberg–Witten Floer homology to obtain an invariant of homology 3–spheres which lives in the S1–equivariant graded suspension category. In particular, this gives a construction of Seiberg–Witten Floer homology that avoids the delicate transversality problems in the standard approach. We also define a relative invariant of four-manifolds with boundary which generalizes the Bauer–Furuta stable homotopy invariant of closed four-manifolds.

Keywords

3–manifolds, Floer homology, Seiberg–Witten equations, Bauer–Furuta invariant, Conley index

Mathematical Subject Classification

Primary: 57R58

Secondary: 57R57

References
Forward citations
Publication

Received: 2 May 2002
Accepted: 5 December 2003
Published: 10 December 2003
Proposed: Tomasz Mrowka
Seconded: Dieter Kotschick, Ralph Cohen

Authors
Ciprian Manolescu
Department of Mathematics
Harvard University
1 Oxford Street
Cambridge
Massachusetts 02138
USA