Volume 6 (2002)

Download this article
For printing
Recent Issues

Volume 18 (2014)
Issue 1 1–616
Issue 2 617–1244

Volume 17 (2013) 1–5

Volume 16 (2012) 1–4

Volume 15 (2011) 1–4

Volume 14 (2010) 1–5

Volume 13 (2009) 1–5

Volume 12 (2008) 1–5

Volume 11 (2007)

Volume 10 (2006)

Volume 9 (2005)

Volume 8 (2004)

Volume 7 (2003)

Volume 6 (2002)

Volume 5 (2001)

Volume 4 (2000)

Volume 3 (1999)

Volume 2 (1998)

Volume 1 (1997)

G&T Monographs
The Journal
About the Journal
Editorial Board
Editorial Interests
Author Index
Editorial procedure
Submission Guidelines
Submission Page
Author copyright form
Subscriptions
Contacts
G&T Publications
GTP Author Index
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060

Seifert forms and concordance

Charles Livingston

Geometry & Topology 6 (2002) 403–408

DOI: 10.2140/gt.2002.6.403

arXiv: math.GT/0101035

Abstract

If a knot K has Seifert matrix V K and has a prime power cyclic branched cover that is not a homology sphere, then there is an infinite family of non–concordant knots having Seifert matrix V K.

Keywords

concordance, Seifert matrix, Alexander polynomial

Mathematical Subject Classification

Primary: 57M25

Secondary: 57N70

References
Forward citations
Publication

Received: 21 August 2001
Revised: 21 April 2002
Accepted: 22 August 2002
Published: 5 September 2002
Proposed: Cameron Gordon
Seconded: Ronald Stern, Walter Neumann

Authors
Charles Livingston
Department of Mathematics
Indiana University
Bloomington
Indiana 47405
USA