Volume 4 (2000)

Download this article
For printing
Recent Issues

Volume 18 (2014)
Issue 1 1–616
Issue 2 617–1244
Issue 3 1245–1863

Volume 17 (2013) 1–5

Volume 16 (2012) 1–4

Volume 15 (2011) 1–4

Volume 14 (2010) 1–5

Volume 13 (2009) 1–5

Volume 12 (2008) 1–5

Volume 11 (2007)

Volume 10 (2006)

Volume 9 (2005)

Volume 8 (2004)

Volume 7 (2003)

Volume 6 (2002)

Volume 5 (2001)

Volume 4 (2000)

Volume 3 (1999)

Volume 2 (1998)

Volume 1 (1997)

G&T Monographs
The Journal
About the Journal
Editorial Board
Editorial Interests
Author Index
Editorial procedure
Submission Guidelines
Submission Page
Author copyright form
Subscriptions
Contacts
G&T Publications
GTP Author Index
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060

Exponential separation in 4–manifolds

Vyacheslav S Krushkal

Geometry & Topology 4 (2000) 397–405

DOI: 10.2140/gt.2000.4.397

arXiv: math.GT/0008212

Abstract

We use a new geometric construction, grope splitting, to give a sharp bound for separation of surfaces in 4–manifolds. We also describe applications of this technique in link-homotopy theory, and to the problem of locating π1–null surfaces in 4–manifolds. In our applications to link-homotopy, grope splitting serves as a geometric substitute for the Milnor group.

Keywords

4–manifolds, gropes, π1–null immersions, link homotopy

Mathematical Subject Classification

Primary: 57N13

Secondary: 57M25, 57N35, 57N70

References
Forward citations
Publication

Received: 27 June 2000
Accepted: 3 November 2000
Published: 10 November 2000
Proposed: Robion Kirby
Seconded: Wolfgang Metzler, Cameron Gordon

Authors
Vyacheslav S Krushkal
Department of Mathematics
Yale University
New Haven
Connecticut 06520-8283
USA